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We analyse the density evolution of fluid within a confined ventilated space resulting
from the action of a dense turbulent plume originating at the top of the space with
finite source volume flux, Q0, and initial source buoyancy flux, B0. The space is
ventilated through upper and lower openings of areas Au and Al respectively, which
are separated by a vertical distance H . We show that if Q3

0 < 2B0Hc2
l A

2
l (where cl is

an empirically determined discharge coefficient) then a two-layer steady stratification
becomes established in the room, with outflow through the lower opening and inflow
through the upper opening. The interface location depends not only on the geometry
of the openings, but also the source conditions. We show that as Q0 increases for
fixed B0, the height of the interface, which equals the depth of the lower layer of
relatively dense fluid, increases. Eventually, when the source volume flux has a value
greater than Qm = (clAl)

2/3(2B0H )1/3, the natural exchange flow becomes blocked and
a steady outflow through both of the openings develops. As a result, the density of the
fluid throughout the room gradually evolves towards the density of the incoming dense
fluid. We compare our theoretical predictions with a series of laboratory experiments,
and discuss the implications of our model for the design of ventilation systems.

1. Introduction
There has been considerable interest in the mixing produced by a localized source

of buoyancy in a confined space since the pioneering work of Baines & Turner
(1969). The problem is of central importance for modelling the natural ventilation
of large buildings, where convective flows can dominate, and for processes such as
Liquid natural gas (LNG) storage where the mixing of new, volatile-rich and older,
volatile-poor LNG is crucial to avoid explosions (Germeles 1975). Mixing produced
by a turbulent plume can also be important in open basaltic magma chambers in
which new buoyant magma recharges the chamber from below (Phillips & Woods
2001). Baines & Turner (1969) examined the mixing produced by a plume in a
confined region with initially uniform density. Their model focused on the motion of
the so-called first front, which descends through the environment and across which
there is an abrupt division between the original fluid in the room and the fluid which
has been cycled through the plume. They also showed how the density profile of the
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fluid behind this front could be determined by solution of the advection equation in
the environment. This modelling was restricted to the idealized case of a pure source
of buoyancy in which there is no source mass flux and in which there is only one
opening. Linden, Lane-Serff & Smeed (1990) and subsequent workers extended the
work to show that in a ventilated room, with two openings, a steady regime becomes
established with inflow through one opening and outflow through the other (e.g.
Cooper & Linden 1996; Gladstone & Woods 2001).

However, in many real applications, there is a non-zero mass flux associated with
the source of buoyancy. Examples include a dense gas leak, hot-air underfloor heating
and recharge in a magma chamber. Here, we show that such a mass flux can have a
profound influence on the longer-term mixing and density evolution in a ventilated but
otherwise enclosed space, where the ventilation prevents pressure build-up associated
with the mass source. Caulfield & Woods (2002) have shown that with one opening,
the flow in a ventilated filling box evolves away from that of the classical filling
box, with the room becoming well-mixed and the density evolving approximately
exponentially towards that of the incoming fluid.

Here we develop and apply this understanding to examine the case of a room
with two openings. We find that if there is a sufficient source mass flux, then, as
in Caulfield & Woods (2002), the room becomes well-mixed, with outflow through
both openings. This corresponds to a purely mechanically ventilated regime. However,
if the source of buoyancy has sufficiently small mass flux, then a two-layer steady
stratification develops, with outflow through the lower opening and inflow through
the upper opening (cf. Linden et al. 1990). We discuss the implications of these results
for the design of natural ventilation systems. We describe the key result in § 2, using a
simple physical argument. In § 3 we describe some laboratory experiments with which
we have compared our physical model for the blocking of the natural ventilation.
Section 4 describes the situation in which the natural ventilation does occur, and
examines how the steady-state solution differs from that of Linden et al. (1990). In
§ 5 we consider the case of high mass flux, and describe a simplified model to capture
the evolution of this regime to a steady state. Finally, we discuss the applications of
our results in § 6, and draw some conclusions in § 7.

2. Prediction of blocking
The flow regimes we consider are shown in figure 1, with figure 1(a) corresponding

to the blocked flow regime, and figure 1(b) corresponding to the naturally ventilated
flow regime. There is an isolated source of dense fluid which descends into the room
from the top of the enclosed space. For simplicity we assume that the upper opening
is located just below the ceiling and the lower opening is located just above the floor
of the room. We also assume that the flow is unidirectional through each opening,
consistent with our experimental observations for the range of flow rates and openings
considered, and that the openings are of sufficiently small vertical extent that they may
each be regarded as being located at a single depth within the room, and separated
by a distance H .

We denote the initial specific buoyancy flux of this source as B0 and the source
volume flux as Q0, where

B0 =
g(ρs − ρa)

ρ0

Q0 = g′
0Q0, (2.1)
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Figure 1. Schematics of the flow through a ventilated room with two openings and a source
of mass and buoyancy: (a) the blocked flow; (b) the naturally ventilated flow.

ρ0 is some reference density, ρs is the source fluid density, g′
0 is the initial source

reduced gravity, and ρa is the external fluid density, which is assumed to be the
same as the density within the room. The Boussinesq approximation is made so that
the density variations from the reference density are only significant in calculating the
buoyancy of the flow. Therefore, the results of this study are also directly applicable
to buoyant plumes rising from the floor of a room, with openings at the floor and
ceiling.

To understand how each of the two regimes may become established, we consider
the development of the flow, assuming that the fluid in the room initially has the
same properties as the exterior fluid. After the flow from the source commences, there
will be outflow from both the upper and lower openings. However, as the turbulent
buoyant plume develops from the dense source fluid, the density structure within
the room will evolve. The plume entrains ambient fluid and convects the source and
ambient fluid to the base of the room where it spreads out and forms a deepening
layer of mixed fluid.

When the source mass flux is sufficiently large, as defined below, we expect that
the deepening layer will ascend through the room, with the plume mixing the fluid
throughout the room (figure 1a) as in the filling box process (Baines & Turner 1969).
Indeed, Caulfield & Woods (2002) have shown that, owing to the finite volume flux,
the density of the fluid within the room ρr (z, t) then tends to become vertically
uniform and gradually increases towards that of the source fluid ρs . As a result of the
difference in hydrostatic pressure gradient inside and outside the room, the pressure
difference between the interior and exterior fluid will become progressively larger at
the lower opening compared to the upper opening. Therefore, an increasing fraction
of the outflow tends to occur through the lower opening.

Indeed, if there is a pressure difference �p between the interior and exterior of the
room at the lower opening, then the volume flux through the lower opening Ql is

Ql = clAl(2�p/ρ0)
1/2, (2.2)

where cl is a discharge coefficient for the opening, and Al is the area of the opening
(Linden et al. 1990). However, the outward flux through the upper opening Qu has
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the reduced value

Qu = cuAu(2[�p/ρ0 − g′
rH ])1/2, (2.3)

where g′
r is the mean reduced gravity of the fluid in the room (with density ρr (z, t))

in comparison to the ambient external fluid (with constant density ρa), i.e.

g′
r =

1

H

∫ H

0

g(ρr − ρa)

ρ0

dz. (2.4)

These two relations may be combined with the equation for the total conservation of
mass

Ql +Qu =Q0, (2.5)

to show that

Q2
u = 2c2

uA
2
u

[
Q2

l(
2c2

l A
2
l

) − g′
rH

]
. (2.6)

Equation (2.6) illustrates how the ratio of the fluxes through the upper and lower
openings evolves as g′

r increases and more of the outflow occurs through the lower
opening. The maximum value, g′

m say, that g′
r can attain occurs when the room is

completely filled with source fluid. In this case, assuming that the room is initially
filled with fluid of density ρa , it is apparent that

g′
r → g′

m =
g(ρs − ρa)

ρ0

=
B0

Q0

= g′
0, (2.7)

the initial reduced gravity at the source. If (2.6) has a real solution for this limit, then
using (2.7), we deduce that

Q0 > Qm =
(
2c2

l A
2
l HB0

)1/3
, (2.8)

and that there will be outflow through both openings. In the critical case in which
Q0 =Qm in (2.8) in the flow through the upper opening is predicted to be zero once
all the fluid originally in the room is replaced by source fluid, see (2.6). If Q0 <Qm,
then we expect that at some point before all the fluid in the room has been replaced
with source fluid, the flow through the upper opening will reverse, and a natural
ventilation regime will become established (figure 1b). This is somewhat analogous
to the flow predicted by Linden et al. (1990), except that they only considered the
case of zero source mass flux. In order to test these predictions, we have conducted a
series of laboratory experiments as described in the next section.

3. Laboratory experiments
We conducted a series of experiments to identify the transition from a blocked

flow regime to the naturally ventilated regime as predicted by (2.8). Two rectangular
Plexiglas tanks were used; the larger tank 2.0 m long × 2.0 m wide × 0.60 m deep
provided a large reservoir of ambient fluid (fresh water) in which the smaller tank
0.18 m long × 0.18 m wide × 0.3 m deep was placed. The smaller tank had a vertical
array of holes drilled in one side to act as openings into the larger tank.

The lowest hole was situated at the tank base, with 0.02 m spacing between the
centres of the holes up to a height of 0.26 m. During an experiment, only the lowest
hole and one other were open to provide top and bottom openings; the rest were
sealed with rubber bungs. A purpose-built plume source was situated in the centre of
the smaller tank with the source situated at the same level as the upper open hole.
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(a) (b)

Figure 2. Photographs of two laboratory experiments exhibiting (a) the blocked flow and
(b) the naturally ventilated regimes.

The plume source, of diameter 0.0045 m, discharged dense saline solution downwards
into the smaller tank.

The nozzle design is similar to that of Dr Paul Cooper of the University of
Wollongong, NSW, Australia, as described by Hunt & Linden (2001). For com-
pleteness, we note the key details below. The source consisted of a vertical tube of
0.007 m internal diameter and 0.005 m length. This tube opens into an expansion
chamber of 0.011 m internal diameter and 0.025 m length. The upstream end of the
chamber is connected to the outflow orifice by a 0.0006 m diameter hole. The final
discharge occurs through a 0.0045 m circular orifice covered with 180 µm diameter
nickel gauze. The vertical tube allows the flow to straighten, and then the flow through
the expansion chamber reduces the momentum associated with the volume supply of
fluid. Forcing the flow through the small hole triggers turbulent motions, which are
augmented by the gauze at the downstream end of the chamber. Tests of this specific
source show that the zone of flow establishment ahead of the source is very small,
� 0.005 m.

Experiments were conducted with the smaller tank initially filled with fresh
(ambient) water. Dyed saline solution was introduced through the source and the
resulting flow developed into a descending turbulent plume. For the lowest flow rate
for which the plume was fully turbulent, a stable two-layer stratification developed
within the smaller tank, with a sharp density interface between the layers (figure 2b;
cf. Linden et al. 1990). The source flow rate was then increased, and a steady-state
exchange was again set up between the smaller and larger tanks, but with a deeper
lower layer of relatively saline fluid. By progressively increasing the flow rate, a series
of steady interface heights was established, each corresponding to a particular source
flow rate, until eventually the interface height just reached the height of the upper
hole, and a weak outflow from the upper opening was observed. At higher flow rates,
the blocked flow regime was observed (figure 2a).

Guided by the prediction (2.8) described in the previous section, a number of
experiments were conducted to determine the critical flow rate for blocking, using
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Figure 3. (a) The critical flow rate for blocking from 30 experiments, showing the dependence
on the source volume flux and the initial density difference of the fluid. (b) The ratio of the
experimental to theoretical value of the critical flow rate for blocking, as a function of the
source volume flux.
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Figure 4. (a) The height of the interface as a function of the source volume flux. Experimental
data are shown for three different flow rates and ventilation openings with areas 0.01944,
(diamonds) 0.0123 (squares) and 0.00707m2 (circles). (b) Comparison of the model prediction
of the interface height with the experimental data in (a).

five different saline solutions (0.5%, 0.75%, 1.0%, 1.5% and 2.0%) and six different
spacings between the two openings (0.16, 0.18, 0.20, 0.22, 0.24 and 0.26 m). The
dimensional values of Qm are presented in figure 3(a), as a function of the distance
between the openings, for the 30 different experiments, and the scaled value Qm/

(2c2
l A

2
l B0H )1/3 is shown in figure 3(b). It is seen that all the data collapse to the

value 1 ± 0.05, as suggested by the simple criterion for blocking, (2.8). In evaluating
the theoretical prediction, we take the discharge coefficient for the flow through the
opening to be cl = 0.7, as determined by independent experiments (cf. Gladstone &
Woods 2001).

Figure 4(a) shows the results of three sequences of experiments which illustrate
how, prior to blocking, the height of the interface increases with source mass flux. In
each of the experimental sequences, the source volume flux was gradually increased
from 2 × 10−6 to 3.83 × 10−6 to 7 × 10−6 m3 s−1. In this case, the three experimental
sequences correspond to three different areas of the ventilation openings: 0.01944,
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0.01234 and 0.00707 m2. In all these experiments the vertical distance between the
openings was fixed at 20 cm. It is seen that there is a significant change (of the order
of 20%–30%) in the interface height as the mass flux is increased by a factor of less
than 3. In the next section, we develop a model to predict the height of the interface
as a function of the source mass flux as well as the geometry of the room, and we
compare this with the data shown in figure 4(a).

In a final series of experiments, the evolution of the density in the room during the
blocking regime was measured by sampling fluid at different heights and times in the
tank. The refractive index of these samples was measured using a Leica refractometer.
The measurements were used to determine the salinity and hence density evolution
of the fluid, and we discuss this in § 5.

4. The natural ventilation regime: height of the steady-state mixed zone
Figures 1(b) and 2(b) illustrate the steady-state flow regime which becomes

established for relatively small values of the source mass flux for which the natural
ventilation flow dominates the effect of the source mass flux. There is a lower layer
of density ρl and depth h above which lies a layer of the original ambient fluid (with
density ρa). The upper layer is supplied by the inflowing fluid at the top opening,
while the dense fluid exits from the lower opening.

Once again there is a pressure difference �p between the interior and exterior of
the room at the lower opening, and so the outflow volume flux at the lower vent is
given by (2.2). In contrast to the model developed in § 2 however, we now assume
that there is inflow through the upper opening, of the form

Qu = −cuiAu

(
2

[
g(ρl − ρa)

ρ0

h − �p/ρ0

])1/2

= −cuiAu(2[g′
lh − �p/ρ0])

1/2, (4.1)

where ρ0g
′
lh represents the difference in the hydrostatic head inside and outside the

room, owing to the well-mixed layer of fluid with reduced gravity g′
l and depth h at

the base of the room, Qu < 0 to denote inflow, and cui is the discharge coefficient
associated with inflow through the upper opening.

At steady state, the buoyancy flux supplied by the source matches the buoyancy
flux issuing from the lower vent, and so

Qlg
′
l =B0 = Q0g

′
0. (4.2)

Using (2.2), (2.5), (4.1) and (4.2), the relationship between the outflowing flux, Ql , and
the height of the interface above the lower mixed layer, h, has the form

Ql

[
Q2

l

(
1 +

2c2
uiA

2
u

2c2
l A

2
l

)
+ Q2

0 − 2QlQ0

]
= 2c2

uiA
2
uB0h. (4.3)

These equations need to be supplemented by one further equation which quantifies
the rate of mixing in the turbulent plume, and hence leads to a second relationship
between Ql and h. At the interface between the well-mixed lower layer and the upper
layer of ambient fluid, the downward flux in the plume matches the net outflow from
the room, Ql . In general, the flow of the descending plume will involve a transition
region near the source, before converging to self-similar plume flow in the far field, as
described by Morton, Taylor & Turner (1956). If the vertical distance from the source
to the density interface far exceeds the distance required for this adjustment, then
use of the classical plume mixing model should provide a reasonable leading-order
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estimate of the mixing (List 1982). Therefore, as an initial idealization to illustrate
the key effects of the source mass flux, we assume that the material issuing from the
source is in pure plume balance (cf. Caulfield & Woods 1995), and so is governed by
the self-similar plume solution as described by Morton et al. (1956).

The plume theory predicts that the volume flux in the plume in an unstratified
environment is

Q(z) = λB
1/3
0 (z + z0)

5/3, λ=
6ε

5

(
9π2ε

10

)1/3

, (4.4)

where z is the distance from the real source, z0 is the distance of the effective origin
behind the source at which a pure source of buoyancy flux B0, with zero volume flux
and zero specific momentum flux would produce an identical flow ahead of the real
source, and ε is the ‘entrainment constant’ (Morton et al. 1956). Here, z0 is given by
the relation

Q0 = λB
1/3
0 z

5/3
0 . (4.5)

The effective origin z0 may be thought of as a parameter quantifying the relative
importance of the source volume flux and the source specific buoyancy flux. Using
this approximate model, it follows that the plume volume flux at the interface, a
distance H − h from the source (figure 1b), is given by

Qp = λB
1/3
0 (z0 + H − h)5/3. (4.6)

In steady state, the plume volume flux across the interface Qp into the dense layer
equals the flow of dense layer fluid Ql out of the room. Therefore, combining (4.3)
and (4.6), we obtain an implicit equation for h:

h =
λ3y

2c2
uiA

2
u

[
y2

(
1 +

2c2
uiA

2
u

2c2
l A

2
l

)
+ z

10/3
0 − 2z

5/3
0 y

]
, y = (H − h + z0)

5/3. (4.7)

The density of the lower layer ρl can then be determined since, in steady state, the
density in the plume when it arrives at the layer must be the same as the density of
the layer, and so

g(ρl − ρa)

ρ0

= g′
l =

g(ρs − ρa)

ρo

z
5/3
0

(H − h + z0)5/3
= g′

0

z
5/3
0

y
. (4.8)

In the limit z0 = 0, (4.7) becomes

h = λ3(H − h)5
(

2c2
l A

2
l +2c2

uiA
2
u

2c2
l A

2
l

)
, (4.9)

which was originally presented by Linden et al. (1990) for the case of a pure source
of buoyancy. In the other limit h = H , (4.7) reduces to the form

H =
λ3z5

0

2c2
l A

2
l

, (4.10)

and combining this with the definition of z0 (4.5) we find that

Q0 =
(
2BHc2

l A
2
l

)1/3
= Qm. (4.11)

This coincides with the condition for blocking (2.8) derived in § 2. For this critical
case, the source strength Q = Qm requires that

z0 = zm =

(
2Hc2

l A
2
l

λ3

)
. (4.12)
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Figure 5. Prediction of the dimensionless height of the interface as a function of the parameter
z0/H , which determines the strength of the source volume flux relative to the source buoyancy
flux, as defined in (4.5) and the geometrical parameter al as defined in (4.14), using (4.13)
under the assumption that cuiAu = clAl .

We have solved (4.7) numerically to find the solution for h/H as a function of z0/H

in the range 0 <z0 < zm and this is shown in figure 5. For simplicity, we assume that
cuiAu = clAl . In such a case, (4.7) can be re-posed in the straightforward dimensionless
form

ĥ =
h

H
= alŷ

[
2ŷ2 + ẑ0

10/3 − 2ẑ
5/3
0 ŷ

]
, (4.13)

where ŷ = y/H , ẑ0 = z0/H and al is the geometric dimensionless parameter

al =
λ3H 4

2c2
l A

2
l

. (4.14)

It is seen that the interface height increases with z0, until reaching the critical
condition for blocking (4.12). Also, we see that the specific value of h increases as
the ratio between the area of the lower opening and the square of the height of the
room decreases. This reflects the reduction in the ventilation flow as the area of the
openings decreases, and hence a tendency to reach blocking conditions more rapidly.

Although the value of z0 depends on the specific source conditions, it increases
monotonically with the source volume flux for a given source buoyancy flux. Equation
(4.7) therefore illustrates that the height of the interface is dependent on the source
volume flux. Conversely, z0 decreases monotonically with source buoyancy flux for
a given source volume flux, and so (4.7) also shows that the height of the interface
is dependent on the source buoyancy flux. This is quite distinct from the case of an
idealized pure source of buoyancy, with no associated mass flux, in which the height
of the interface is independent of the source buoyancy flux. For real systems, such as
an air-conditioning unit which supplies cool air, and in which the source buoyancy is
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finite, the magnitudes of the effective source fluxes may be important in determining
the location of the density interface in the room.

In comparing the theoretical model with measurements from actual experiments
(figure 4), we need to estimate the rate of increase of volume flux in our experimental
plumes with distance from the source. However, as the volume flux increases, or the
area of the openings decreases, the interface tends to rise towards the top of the room,
and therefore enters the near-source part of the descending plume. As a result, in the
experiments, the plume motion may not have fully converged to the asymptotic law
(4.4) which describes the volume flux as a function of the distance from the source.

In order to provide a more accurate comparison of the theory with our experiments,
we have therefore solved the horizontally averaged equations describing the motion of
a turbulent buoyant plume numerically. The two characteristic quantities of interest
are the volume flux Q, and the specific momentum flux M , defined as

Q(z) = 2π

∫ ∞

0

wpr dr = wpb2, M(z) = 2π

∫ ∞

0

w2
pr dr = wp

2b2, (4.15)

where wp(r, z) and ρp(r, z) are the axisymmetric, time-averaged vertical velocity and
density distribution within the plume, ρr is the room density, ρ0 is a reference density,
g′ is the reduced gravity, and we have defined, for simplicity, the equivalent top-hat
values of the plume density ρp(z) and vertical velocity wp(z), which are constant
within the plume (of characteristic radius b(z)) and zero outside. In the unstratified
region, 0 <z <h, the buoyancy flux is constant B = B0, and so Q and M satisfy

dQ

dz
= 2επ1/2M1/2, (4.16)

M
dM

dz
= B0Q, (4.17)

where ε � 0.12 is an empirically determined entrainment coefficient or constant
(Morton et al. 1956; Turner 1979, 1986) appropriate for top-hat models. Combining
these relations, we find

dQ

dz
= 2π1/2ε

(
M

5/2
0 +

5B0

8π1/2ε

(
Q2 − Q2

0

))1/5

, (4.18)

where Q0 is the initial volume flux, and M0 is the initial specific momentum flux. In
our experiments, the flow issuing from the source had high Reynolds number and
formed a turbulent flow so that to good approximation we assume

M0 =
Q2

0

As

, (4.19)

where As is the source area.
We have integrated (4.18) numerically using the appropriate values of Q0, and hence

M0 using (4.19), for our experiments. Using this numerically determined relationship
between Qp and h combined with (4.3) and the observation that at steady state
at the interface the plume volume flux Qp equals the outflow through the lower
opening Ql , we can determine the steady height of the interface, h. Since the source
conditions (4.19) are not in pure plume balance, this numerically determined value of
h is somewhat different from the solution to the idealized, though instructive, implicit
equation (4.7), though h exhibits the same qualitative dependence on Q0, B0, and the
areas of the openings.
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In figure 4(b) we present three curves which illustrate the predicted variation of
the interface height with source volume flux, for the three values of the ventilation
opening corresponding to the data in figure 4(a). It is seen that the difference between
the theoretical prediction and experimental measurement is less than 10% for each
particular experiment. However, there are insufficient data to confirm the overall
trend of the predictions. It is worth noting that in figure 12(a) of Linden et al.
(1990), the theoretical prediction of the interface height consistently overpredicts the
experimental observation; although insufficient information is given in that paper to
compare our model calculations with the data, the discrepancy may be related to the
finite mass flux used in those experiments.

5. The blocked regime: evolution with time
For the blocked flow regime (figures 1a and 2a) there is outflow through both

openings, and so the density of the interior continues to evolve until eventually the
density matches that of the inflow. This evolution occurs with the interior fluid being,
to a good approximation, well-mixed, in a similar manner to the evolution of the
singly ventilated room, as described by Caulfield & Woods (2002). The mixing of the
interior fluid occurs over a filling box time, which scales as

τf =
AH

λB
1/3
0 H 5/3

, (5.1)

where A is the cross-sectional area of the room. Subsequently, the density of the
fluid venting from both openings is similar, and to leading order the mean reduced
gravity in the room g′

r , as defined in (2.4), may be described by a relation of the
form

AH
dg′

r

dt
=Q0(g

′
0 − g′

r ), (5.2)

where g′
0 is the reduced gravity of the source fluid in comparison to the external

ambient density of the incoming fluid, as defined in (2.1).
This equation has solution

g′
r (t) = g′

0

[
1 − exp

(
−Q0t

AH

)]
. (5.3)

In figure 6, we present a series of experimental data which illustrate how the
dimensionless reduced gravity of the fluid in the room, g′

r (t)/g
′
0, varies as a function

of the dimensionless time t/τr , where τr = AH/Q0 is the fluid replacement or turnover
time, i.e. the time required to replace all the fluid in the room with input source fluid,
in the complete absence of mixing. Data are shown for two experiments in which
the buoyancy of the source fluid had value 2 wt% and 3wt%. It may be seen in
figure 6 that all the data collapses to the same curve, given by (5.3), supporting this
very simple model of the density evolution of the interior in the fully blocked regime.
The model applies as long as the filling-box time, τf , is much shorter than the fluid
replacement time, τr , so that the layer becomes well-mixed prior to all the fluid being
replaced by new fluid from the source. Caulfield & Woods (2002) have examined how
the density profile evolves towards the well-mixed state in the analogous situation in
which there is a single ventilation opening, considering arbitrary values of the ratio
between these two times. The transient behaviour of the flow in the present case is
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Figure 6. Variation of the reduced gravity in the room as a function of dimensionless time,
for the blocked flow regime. Data are shown for two experiments, using source plumes with 2
and 3 wt% salt in solution. The source volume flux was 5 × 10−6 m3 s−1 for both experiments.
Data are shown at four different depths in the room (0, 0.05, 0.10 and 0.15m above the floor)
for each experiment. The theoretical prediction using the simple well-mixed model given by
(5.3) is also shown.

more complex, owing to the progressive evolution of the outflow through the two
holes, and indeed some flows commence by being blocked but then become naturally
ventilated. These effects are beyond the scope of the present contribution, and will be
described in a companion paper, at present being prepared.

6. Application and discussion
The key result of this work is that when there is a source of mass as well as

buoyancy, the natural ventilation regime may become blocked. According to (2.8),
blocking is likely to occur if (i) the source mass flux is sufficiently large, (ii) the source
buoyancy is sufficiently small, (iii) the area of the opening, through which there is
outflow in the natural ventilation regime, is sufficiently small, or (iv) the distance
between the two openings in the room is sufficiently small. It is curious that the size
of the opening through which there is inflow during the naturally ventilated regime
does not affect the critical condition for blocking. This is because at the critical
condition there is zero net flow through that opening.

In order to illustrate how natural ventilation can enhance the volume flow of air
through the room, in figure 7 we illustrate how (a) the total outflow from a room,
and (b) the ratio of total volume outflow to the volume input from the cold source,
vary with the volume input from the cold source, expressed as a function of the
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Figure 7. Evolution of flow rate in the natural ventilation regime, as the source mass flux,
expressed through the virtual origin z0, changes. Curves illustrate the variation of (a) the total
volume flux venting from the room, normalized by the value of the flux when z0 = H ; and
(b) the ratio of the total volume flux venting from the room compared to the volume flow
supplied by the cooling unit as a function of the effective virtual origin of the cooling unit.
The curves illustrate how the natural ventilation can significantly enhance the circulation of
air through the room, even though the total flow from the room decreases as the volume flux
supplied from the chiller decreases.

effective origin of the source, z0/H (§ 4). Figure 7 illustrates that as the source mass
flux decreases (decreasing z0), and hence the interface migrates downwards from the
top of the room, the natural ventilation flow becomes progressively larger relative to
the source mass flux, even though the overall volume flow decreases. Indeed, when
the interface is located in the centre of the room, the natural ventilation flux is nearly
100 times greater than the flow supplied from the cooling unit. In this way, natural
ventilation can provide a very effective means of maintaining circulation with a room,
without the requirement to pump large quantities of air into the room.

We can use the blocking criterion (2.8) to understand conditions under which
natural ventilation may develop in the situation in which cold air ventilates and
chills a room, for example during summer. Let us consider the case in which the
temperature difference between air-conditioned air and the exterior lies in the range
5–10 K, the area of the openings is 3 m2 and the distance between the openings is
5 m. Then the reduced gravity of the cool air is of order g′

0 = g�T/T which has
value 0.1–0.3 m s−2. The critical flow rate for blocking given in (2.8) would then lie in
the range Qm � 2–3 m3 s−1. For a room of volume 100–500 m3, this would imply an
overall fluid replacement time of about 2–3 minutes which is about 10 times greater
than required; hence under such conditions, natural ventilation is a viable process.
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The air conditioner could supply air at a slower rate to allow some natural ventilation
to develop in the room, thereby enhancing the volume flow of air through the room
relative to that purely associated with the cooler.

However, if the area of the ventilation openings was reduced to 0.3 m2, then the
maximum critical flow rate of air from the chiller for the onset of natural ventilation
would reduce to about 0.2–0.3 m3 s−1. This would be close to the minimum flow
required in order that the air in the enclosed space was replaced sufficiently frequently.
Under such conditions natural ventilation may not be viable, since reducing the rate
of supply of cool air from the chiller would reduce the overall flow from the room
(figure 7), even if the natural ventilation suppresses the rate of decrease of ventilation
flow relative to the supply from the chiller.

7. Conclusions
We have examined the situation in which a finite source of buoyancy of finite mass

flux invades a reservoir which is ventilated through openings at two different levels
(figure 1). The model has shown that a naturally ventilated two-layer stratification
becomes established for small mass fluxes in an analogous fashion to that described
by Linden et al. (1990). However, as the mass flux increases, the level of the interface
between the two stratified layers advances towards the source of the buoyancy
flux. As a result, the intensity of the flow through the opening nearer the source
decreases towards zero. At this point, we describe the natural ventilation flow as
being blocked. Any further increase in the source flux leads to outflow through both
openings, and a cessation of the natural exchange flow. Our theoretical predictions
have been confirmed by a series of analogue laboratory experiments which reproduce
the conditions for blocking. We have also examined theoretically and experimentally
(i) the steady-state flow regime which develops in the natural ventilation flow but
accounting for the finite source mass flux, and (ii) the transient flow which develops
for the blocked regime.

The modelling points to the important role of blocking in air-conditioned systems.
When the exterior temperature is very high, the natural ventilation flow will tend to
be dominant and leads to an exchange flow and a temperature stratification in the
interior. With the blocked flow regime, the additional circulation of warm exterior
air associated with natural ventilation is suppressed and ultimately leads to a cooler
interior. In very hot conditions the blocked flow regime may therefore be preferable,
while in more temperate conditions, natural ventilation flow may provide a very viable
hybrid low-energy solution for ventilating the building, while cooling it with a chiller.

In closing we mention that there are several developments of this model which
merit further investigation. As the aspect ratio of the room decreases so that the area
of the plume becomes a significant fraction of the cross-sectional area of the room,
then the mixing process will not be strictly described by the filling-box process and
the interface height may therefore diverge from that in the present results. Also, if
the source of buoyancy is not localized then the room will tend to become well-mixed
and the stratification will be eroded (cf. Gladstone & Woods 2001).

This research has been funded in part by the EPSRC, the CMI Low Energy
Building Project, the University of California Energy Institute, and the BP Institute.
We are grateful to Gary Hunt for his suggestions about the design of the plume
source used in our experiments.
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